
SEER: Practical Memory Virus Scanning as a Service ∗

Jason Gionta
NC State University
jjgionta@ncsu.edu

Ahmed Azab
Samsung Electronics Co., Ltd.

ahmedmoneeb@gmail.com

William Enck
NC State University
whenck@ncsu.edu

Peng Ning
NC State University

pningncsu.edu

Xiaolan Zhang
Google Inc.

czhang.us@gmail.com

ABSTRACT
Virus Scanning-as-a-Service (VSaaS) has emerged as a pop-
ular security solution for virtual cloud environments. How-
ever, existing approaches fail to scan guest memory, which
can contain an emerging class of Memory-only Malware.
While several host-based memory scanners are available,
they are computationally less practical for cloud environ-
ments. This paper proposes SEER as an architecture for en-
abling Memory VSaaS for virtualized environments. SEER
leverages cloud resources and technologies to consolidate
and aggregate virus scanning activities to efficiently detect
malware residing in memory. Specifically, SEER combines
fast memory snapshotting and computation deduplication to
provide practical and efficient off-host memory virus scan-
ning. We evaluate SEER and demonstrate up to an 87%
reduction in data size that must be scanned and up to 72%
savings in overall scan time, compared to naively applying
file-based scanning approaches. Furthermore, SEER pro-
vides a 50% reduction in scan time when using a warm
cache. In doing so, SEER provides a practical solution for
cloud vendors to transparently and periodically scan virtual
machine memory for malware.

1. INTRODUCTION
Virus Scanning-as-a-Service (VSaaS) has become a popu-

lar topic for research and industry [4, 9, 17, 20, 25]. However,
existing solutions only scan secondary storage. As malware
continues to mature, file-only virus scanning is insufficient.
We have already seen several instances of “Memory-Only
Malware” that evades detection by many popular virus scan-
ners [19, 14, 15]. In fact, only 30% of the most popular host-
based virus scanners support memory virus scanning [16],
and the computational overhead of their signature match-
ing techniques makes memory scanning an infrequent event.

∗This work is supported by U.S. National Science Founda-
tion (NSF) under grant CNS-1330553.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

ACSAC ’14, December 08 - 12 2014, New Orleans, LA, USA
Copyright 2014 ACM 978-1-4503-3005-3/14/12 $15.00
http://dx.doi.org/10.1145/2664243.2664271.

Memory-based VSaaS would provide benefit to both cloud
clients and providers as Virtual Machines (VMs), like tradi-
tional hardware environments, require proper security mea-
sures to minimize threats and detect intrusions. However,
designing a practical VM memory scanning service is non-
trivial as (1) virus scanning is traditionally a CPU intensive
task that can negatively impacts guest VM operations, (2)
memory that changes during analysis can lead to false posi-
tives [2], (3) scanning multiple VMs concurrently can impact
VM and host operations (i.e., “anti-virus storms”) [23], and
(4) file scanning optimizations are less effective for memory.

In this paper, we propose SEER as an architecture al-
ternative to in-host memory scanning that enables efficient,
transparent Memory VSaaS for virtualized cloud infrastruc-
tures. SEER “peers” into running VMs to efficiently identify
malware in resident memory. SEER is built on DACSA, a
decoupled architecture for cloud security analysis, to mini-
mize guest and host performance [7]. DACSA enables fast
memory snapshots and memory extraction. SEER processes
snapshot data off-host to identify similar memory and du-
plicate scanning computation thus leading to a reduction in
scan time. In doing so, SEER allows cloud providers to scan
guest memory much more frequently and efficiently than
naively applying existing file based scanning approaches.

Computation deduplication in SEER is achieved using a
new algorithm that we call Prefix Based Scanning. Prefix
Based Scanning is optimized by identifying partial data simi-
larities across all memory segments to scan and normalizing
similar data. For example, many Windows processes load
ieframe.dll each containing small differences based on load
address and runtime state. As a result, Prefix Based Scan-
ning reduces the amount of computation to scan by only
scanning identical prefixes once. Furthermore, our Prefix
Based Scanning algorithm also identifies memory pages not
present and virtually “fills in” similar memory from other
processes per VM to increase virus scanner accuracy.

As a proof of concept to analyze the efficiency of SEER, we
adapt the popular open source virus scanner ClamAV [10]
to enable Memory VSaaS with Prefix Based Scanning. Our
results show that SEER is practical and can be deployed by
cloud vendors to find both existing file based malware and
stealthy Memory-Only Malware in memory.

We make the following contributions:

• We propose a new architecture for efficient Memory
VSaaS. SEER addresses a major gap present in exist-
ing Virus Scanning-as-a-Service solutions. We describe
and overcome the challenges of memory scanning that
prevent naive application of traditional file based scan-

ning techniques.

• We propose Prefix Based Scanning for efficiently scan-
ning dynamic memory. Our proposed approach works
to consolidate data thus reducing the amount of com-
putation required to scan memory. The approach can
be adopted by existing host based memory virus scan-
ners to reduce scanning computation.

• We provide an experimental evaluation of SEER and
show our design reduces the data size to be scanned
up to 87% and the time to scan the data by up to
72%, compared to naive scanning approaches. We also
demonstrate that SEER can correctly identify memory
malware in infected machines.

The remainder of this paper proceeds as follows. Sec-
tion 2 provides background on Memory-Only Malware and
the challenges faced by memory scanning. Section 3 contains
our design, implementation, assumptions and threat model.
Section 4 evaluates SEER. Section 5 discusses deployment,
security and privacy concerns, and limitations. Section 6
discusses related work. Section 7 concludes.

2. MOTIVATION AND BACKGROUND
2.1 Memory-Only Malware

Memory-Only Malware (MoM) identifies a class of stealthy
malicious software that does not modify files on a target sys-
tem. As such, MoM bypasses file-based detection techniques
and the majority of popular virus scanners [16]. MoM trades
persistence for stealth. While MoM will not survive system
reboots, attackers are using new ways to gain persistence
through “Watering Hole Attacks” [18].

MoM is not a new concept. The infamous Code Red Worm
propagates only through memory [19]. More recently, secu-
rity analysts have identified a Hydraq/McRAT variant that
allows remote access to infected machines [15]. Finally, the
popular MetaSploit framework provides an “out-of-the-box”
MoM called Meterpreter [14].

Malware such as Zeus and Conficker also benefit from the
lack of memory scanning. They only need to bypass virus
scanning software once to gain a foothold. Once initial de-
tection is bypassed, the malware uses code injection to infect
benign active processes [12]. Injected code allows malware
to stay resident in the running machine even when physi-
cal files are later found and removed. As a result, malware
analysts recommend using memory dumps to discover and
identify malware [12].

2.2 Scanning Memory
Memory scanning consists of analyzing virtual memory to

find malware based on virus definitions. Previous work [9]
has applied file-based scanners to physical memory. How-
ever, scanning physical memory will lead to incorrect results
because virus definitions require correct context to match
definitions. As a result, a memory based virus scanner must
scan virtual memory to ensure correct context. For modern
operating systems, each process has its own virtual memory.

The virtual memory of a process (p) is a set of memory seg-
ments Sp. Each memory segment s ∈ Sp represents an indi-
vidual memory allocation managed by the operating system
(OS) with size ssize bytes. Memory segments can contain
stacks, heaps, or mapped files. Then psize = Σssize, ∀s ∈ Sp

represents the size of memory allocated for process p. Mal-

ware can potentially reside in any process memory segment,
therefore all processes on the OS, represented as the set P ,
must be scanned. That is, Psize = Σpsize, ∀p ∈ P bytes
must be scanned.

A naive approach would be to scan all Psize bytes of mem-
ory. However, this faces the following challenges:

C1. Scanning is computationally intensive requiring signif-
icant CPU resources to match signatures. Scanning
often disrupts critical operations during analysis. A
large Psize can result in minutes of scanning and thus
is not ideal for production environments.

C2. Memory modified during analysis can impact the cor-
rectness of scanner results, leading to false positives
and negatives [2]. This occurs because scanners must
copy, examine, and analyze memory that is constantly
changing. As a result, false assumptions are made
about the consistency of the data being analyzed.

C3. Multiple VMs scanned at the same time on a single
host leads to “Anti-Virus Storms”, which can affect
non-scanning guests and host operations [23].

C4. Hashing is widely used by file-based virus scanners as
an optimization to limit the amount of data to scan.
Memory is often unique which limits the effectiveness
of hashing memory segments to identify previously
scanned data. We find that previous hashing tech-
niques used for file-based scanning [20, 17] only re-
duces the memory segments to scan by ≈14% for a
single VM.

3. SEER
Next we give an overview of the SEER architecture. We

discuss the disparate components for enabling SEER and the
workflow for scanning VMs. We then detail specific design
decisions for Prefix Match Scanning.

3.1 Overview
The SEER architecture enables practical, VM transpar-

ent, efficient memory scanning for virtualized cloud infras-
tructures. SEER overcomes challenges (C1-C4) by shift-
ing memory scanning to a third party in which (1) guest
VM memory is extracted and only unique data is shipped
off-host, (2) a scan scheduler pre-processes data to identify
similarities in data to scan, and (3) a modified scanner uses
pre-processed meta-data to identify viruses in an isolated
environment. The VM and host only incurs a small cost for
extracting and shipping data (C1,C3) and prevents mal-
ware or exploits that targets the scanning process [17].

Figure 1 illustrates the main components and flow of SEER.
The cloud provider will request/schedule (1) VMs for scan-
ning. The scan scheduler initiates a scan (2) by request-
ing the memory extractor to extract memory and then ship
memory meta-data and unique page data for pre-processing.
The scheduler (3) stores the data and builds a scan config-
uration based on data extracted. The scan scheduler then
triggers a new scan (4) using the generated scan configura-
tion and (5) results are relayed to the cloud provider. For
our design discussion, we consider QEMU/KVM as the host
and Windows as the guest VM operating system.

On the virtualization hosts, we leverage DACSA to sup-
port fast, non-intrusive VM memory snapshots and memory

4) Start Scan

3)Store Unique
Page Data

Host

5) Update Provider

1) Scan VMs

Scan Scheduler

Cloud Provider

Memory
Extractor

VM VM

Memory
Extractor

...

Host

2) Request
Extraction

Memory
Data

Memory Scanner

Scan
Config

Monitored Host

Detection
Results

6) Inform
VM Owners
of Infections

Figure 1: SEER Overview

extraction. DACSA creates a logical static copy of memory
in milliseconds without copying data byte-by-byte [7]. This
prevents consistency issues which can arise from analyzing
memory that continues to change (C2). Memory segments
to be scanned are extracted from the logical copy using pre-
existing knowledge of the VM operating system similar to
forensic techniques employed by Volatility [24]. Segment
data meta-data is sent to the scheduler and instructs the
extractor to send/store only unique page data. This pre-
vents shipping large amounts of data over the network.

After the necessary page data is shipped, the scan sched-
uler beings pre-processing by reconstructing stored page data
into memory segments for each VM. Each segment can be
naively scanned with traditional virus scanners however the
total size to scan (Psize) can be very large.

To address scanning large amounts of data, file based virus
scanners use hashing to identify previously scanned data.
Files hashed to known values do not need to be re-scanned.
This technique is most beneficial on static data. Unfortu-
nately, memory segments are often unique due to its dy-
namic nature making this simple optimization less effective.

We observe that while many memory segments are unique,
many segments are similar to some other segments within a
VM. For example, the Windows library ieframe.dll can be
found mapped across many processes in a running system
(e.g., Internet and Windows Explorer). Memory segments
for ieframe.dll will share identical PE headers and code sec-
tions but will differ in their data sections. As a result, a
naive scanner will simply identify both segments as unique.

Using simple hashing techniques to eliminate scanning du-
plicate data is not effective for memory. Furthermore, false
positives can arise from scanning non-present or zeroed data
due to coarse grained virus definitions. SEER employs four
optimizations to address the above issues:

1. Only globally unique page data is sent off scanned VM
hosts. This obviates shipping all snapshot memory and
reduces the processing time to extract memory hence
reducing impact to VMs, hosts, and network.

2. SEER matches identical prefixes across all memory
segments. Matched prefix data determines where du-
plicate scanner computation occurs. SEER uses matched
prefix data to scan identical prefixes only once. For ex-
ample, two libraries extracted from memory will have
duplicate header data but contain different runtime
data. SEER will match the header as a prefix and only
scan the header data once instead of multiple times.

3. Memory segments are normalized intra-VM to increase
similarities between segments. Normalizing memory

segments increases the lengths of matched prefixes.
This results in less data being scanned.

4. The SEER scanner is provided meta-data and thus
can avoid unnecessary computations by not process-
ing non-present data.

The above optimizations allow SEER to efficiently scan
unique data reducing the computation required to analyze
the full set of memory segments (C4).

SEER leverages existing virus scanners for identifying and
matching known malware signatures in memory. Thus, SEER’s
effectiveness at identifying malware is reliant on the adopted
virus scanner’s signature database and signature matching
techniques. SEER does not look to improve matching of
existing scanners but to provide a novel architecture for ex-
tending existing techniques to efficiently scan memory.

Assumptions and Threat Model: We assume that
an attacker has full control over the guest VM. However,
attackers wish to remain stealthy and avoid detection thus
avoiding behaviors which raise suspicion such as attacks on
availability or resource exhaustion.

3.2 VM Host Memory Segment Extraction
Next we discuss the process of memory extraction and

segment data shipping off VM host machines. Memory ex-
traction is built on DACSA to limit the impact to host and
guest environments. We add discussion on shipping memory
segments not previously discussed in DACSA [7].

3.2.1 DACSA: Fast Snapshots and Extraction
DACSA is a decoupled architecture for virtual machine

memory analysis. DACSA introduced a reliable fast mem-
ory snapshot technique using Copy-On-Write to create a
logical copy of Virtual Machine memory allowing memory
to become a data source for analysis. Memory forensic tech-
niques are then applied to extract security relevant informa-
tion. DACSA showed to have minimal impact on host and
guest operations during the snapshot and memory extrac-
tion process. Due to space constrains we limit the discussion
on fast snapshotting and memory extraction. We encourage
the reader to read previous work on DACSA [7].

3.2.2 Carving Segments from the Logical Copy
Memory segments1 are carved from the logical copy based

on the VM guest OS semantics. For Windows, memory seg-
ments are obtained from walking each process’s Virtual Ad-
dress Descriptor (VAD) tree structure [5]. The VAD tree is
a binary tree where each node represents an allocated mem-
ory space by the process and thus a single memory segment.
Each VAD tree node contains a starting and ending virtual
address specific to the process. We extract memory segment
data using these addresses and the process’s page-tables.

3.2.3 Shipping Memory Segment Data
Each segment is processed during segment extraction page-

by-page using the VAD starting and end address. A hash of
each page is generated to determine if the page data needs to
be sent to the schedule. First, the hash is looked up locally.
If not found, the hash is added to a batch of hashes to send
to the scheduler. Once the batch is sent, the schedule checks
each page in a global hashtable and returns which pages are

1We use “memory segment” to refer to the carved unit of
memory, which does not correspond to an x86 segment.

Header Code Data

X

X-1

w0 w1 ... wi ... wn-1 wn
s (i*s) ((i+1)*s)

0
x
F
F

Header Code Data

0
x
0
0

Figure 2: Two binaries that differ at byte X have an
identical X − 1 bytes prefix. Binaries are split into
windows size s. Hashes of window wn−1 identifies
the difference.

needed for scanning. If the page hash value has been stored
before, meta-data for the hash is stored with the hash identi-
fying the VM, segment, and offset. The scheduler then uses
the hash to reconstruct the segment for pre-processing and
scanning. This process is similar to VM memory deduplica-
tion techniques [8].

3.3 Segment Similarity Detection Off-Host
For segments that are similar but not identical, we observe

the scanner may unnecessarily duplicate scanning effort. For
example, Figure 2 depicts two identical binaries that contain
only a single byte difference at index X. A traditional naive
scanner will identify each segment as unique and scan each
segment separately from low bytes to high. We observe that
after each scan instance has processed the first (X−1) bytes
in the example, the scanner signature matching states will
be equal as the prefix (X − 1) bytes are identical for both
binaries. Thus, the scanner will have duplicated matching
computation for this prefix.

Prefix information provided to the scanner allows a single
unique prefix to be scanned only once across similar seg-
ments. This is beneficial for binaries used across many pro-
cesses and machines as most will be unique but share some
identical header and code sections.

3.3.1 Prefix Matching
SEER needs to quickly identify common prefixes across

all segments. While byte-by-byte comparison provides very
fine-grained matching, it comes at a large cost. We are
only concerned with identifying identical prefixes which are
aligned to the beginning of memory segments.

To quickly identify differences in data, previous techniques
such as fuzzy hashing [11] and rolling hashes [22] have been
proposed. Unfortunately, these techniques do not lend them-
selves to finding the longest prefix in pseudo-random data.
Specifically, the effectiveness of these approaches relies on
finding a suitable trigger. Instead, we choose a more straight-
forward approach which uses a rolling window to approxi-
mate the longest prefix.

Figure 2 provides a reference for partial segment hashes,
which we discuss next. After segment extraction, each seg-
ment is divided into n + 1 non-overlapping parts of data
using meta-data to reconstruct segments. We refer to this
data as window w. The ith window, wi, represents bytes
from (i ∗ s) to ((i + 1) ∗ s) − 1 where s is the window size.
Each wi is hashed by the scheduler in order from i = 0 to
i = n. Window hashes, window offsets (i ∗ s) and size (to
handle boundary cases) can then be compared across seg-
ments beginning from low to high index. If two hashes at an
index do not match, the index identifies the longest prefix
for a pair.

Encoding Prefix Information: SEER needs to quickly

Algorithm 1: Algorithm for updating scheduler.

foreach S ∈ Segments do
1 node = root

foreach w ∈Windows do
2 if node.SUID = S.SUID
3 node.window = w
4 if w.index >= node.index + node.size
5 if hash(w) ∈ node.children

node = node.children(hash(w))
6 AssociateWindow(node, S.SUID,w)

else
node =NewNode(node, S.SUID, w)

7 else
8 if node.hashes[w.index] = hash(w)
9 AssociateWindow(node, S.SUID,w)

else
10 split node at w.index

create two children
node = new child for w

determine the longest prefixes across all segments and store
relevant information for scanning. We achieve this through
a combination of hash tables and building a rooted directed
tree (e.g., as in Figure 3). The rooted directed tree naturally
represents prefixes by encoding information in each node. As
the tree is walked from the root towards children, data for
segments can be processed and read in linear fashion.

Prefix information is encoded in the tree nodes. Each
node represents a unique prefix and maintains several pieces
of information used for scanning and segment association.
Specifically, nodes contain (1) associated segment ids
(SUIDs) which track matched segments, (2) a range to ex-
plicitly define where the matched prefix starts and ends for
the associated SUIDs, and (3) a hash table for looking up
child nodes. To track hashes and data for each node, win-
dow hashes are stored for each index represented by the
node. These hashes are used to later build and retrieve the
data stored from segment extraction.

Algorithm 1 depicts how the tree is built using memory
segments and windows. As windows are processed by the
scheduler, the tree is walked and updated. For processing
new segments, the walking begins at the root node (line 1).
If the received hash’s index does not fall in the current node’s
explicit range (line 4) then the hash value is not represented
by the current node as a previous prefix has been defined for
the hash’s index. As a result, the current node’s child hash
table is searched for an association (line 5). A new node
is added if no child node with the hash and corresponding
index is found (line 7). If the hash matches a child, the
hash is associated with the matched child node (line 6).
During association, the SUID is added to the node’s list of
SUIDs with common prefix and matched indexes. If the
hash’s index falls in the current node’s explicit range (line
8), the node’s stored hash for index is compared (line 9). If
identical, the associated SUID is updated for the node (line
10). Otherwise, a new prefix is identified and the current
node is split at the window index creating two child nodes
(line 11). To quickly add new unique prefixes, each node
stores the first SUID used to create the node. If the SUID
for the window hash is the same as the node’s first SUID
(line 2), the node only needs to update the current node
with the window hash and index information (line 3). Such

Root

SUID:1

Start Offset: 0x0

End Offset: 0x1000

SUID:2

Start Offset: 0x0

End Offset: 0x1000

SUID:3

Start Offset: 0x0

End Offset: 0x7000

SUID:1

Start Offset: 0x1000

End Offset: 0xA600

SUID:4

Start Offset: 0x1000

End Offset: 0xA600

SUID:5

Start Offset: 0x7000

End Offset: 0x8000

SUID VM IDAddress Size PID

1 1 0x112000 0xA600 872

2 1 0x60000 0x1000 872

3 1 0x1e000 0x7000 872

4 1 0x482000 0xA600 1788

5 1 0xff0000 0x8000 1788

Figure 3: Scan tree representing 5 memory segments.

is the case when the root node contains no children.
Figure 3 depicts a prefix matched tree with five unique

memory segments. Segments with SUID 1 and 4 represent a
mapped binary. We see that the longest prefix for 1 and 4 is
found at offset 0x1000. Thus, the scanner would only need to
scan the first 0x1000 bytes of SUID 1 and 4 one time instead
of twice. SUID 2 represents a unique segment as reflected by
a node with no children. SUID 3 and 5 represent a data file
for browser history. We see that the longest prefix is found
at offset 0x7000 when SUID 3 ends. SUID 5 is added as a
child of SUID 3 as SUID 5 has an extra 0x1000 bytes in the
segment. In this case, the scanner would only scan the first
0x7000 bytes of SUID 3 once. The total savings dictated by
the tree is 0x8000 bytes.

3.3.2 Binary Normalization
Binaries mapped across processes often provide opportu-

nities to match large prefixes, as per our ieframe.dll exam-
ple. This property allows additional opportunities to dedu-
plicate scanning work. We found that binaries have a semi-
consistent structure in which static headers and code resides
at the beginning. While nothing prevents code sections from
being located at the end of binaries, this pattern is default
for common compilers. This attribute of binaries ensures
prefixes match at least header and code sections for seg-
ments with the same backing file on disk.

Unfortunately, we found that beginning memory is not al-
ways identical due to how the underlying OS manages mem-
ory for mapped files. For example, a page may be marked
not present in a process’s page table but mapped in another.
As a result, we use a technique for normalizing binaries to
extend the length of matched prefixes.

Filling Non-Present Pages: OS memory management
units employ on-demand paging to reduce the memory foot-
print of processes and improve performance. Only processes
accessing the page has its pagetable updated to include the
new physical page mapping. As a result, pagetables between
processes are not synchronized for common shared binaries.

The lack of inter-process pagetable synchronization im-
pacts prefix matching for memory segments. For example,
consider two processes that both use the ieframe.dll. The
third page of ieframe.dll is accessed by process P1 but not
P2. As a result, the third page for P1 will be marked present
while the same page for P2 is non-present and the corre-
sponding window hashes (w2) will not match. The longest
prefix for P1 and P2 will be the index of w2.

SEER conservatively normalizes memory segments by fill-
ing in non-present pages with pages found present in other
segments that are mapped to the same binary file. During
memory extraction, segments are grouped by binary head-
ers, corresponding load addresses, and size. In Windows, bi-
nary files loaded from the same file on disk will all be placed

at the same address in memory by the default loader.
Once grouped, each segment’s data is walked to identify

present pages and indexes. If a page is present, the status
is checked to see if a previous data page has been stored
for that index. If previously stored, a hash of the data is
compared to ensure equality. In some cases, present data at
a page index may not be equal and conflict across segments
in the group. This occurs if a page has been modified by a
process, for example, when modifying data or malicious code
manipulation. In this case, we conservatively mark the page
status for the page index as unknown and do not use the
page to fill non-present pages for groups of binaries. Page
filling occurs with regards to given VM.

3.4 Prefix Matched Scanning
After all memory segments have been processed, the sched-

uler contains a tree of nodes representing unique prefixes
covering all segments. Each node in the tree contains infor-
mation used by the scanner to scan the unique prefix.

To scan all segments, each node must be processed and
data represented by the node scanned. We process each
node by walking the tree in a Depth First Search manner.
As the scanner requests data to scan, node attributes are
used to determine which data to provide. A node boundary
is reached when the scanner asks for data at an offset greater
than the current node’s end address. As a result, the scanner
takes actions to walk each child.

Each child node to be processed requires the same scan
state as the parent. Thus, the scan state must be saved or
duplicated so each child can have its own copy to continue
scanning correctly. To facilitate coping scan state, the scan-
ner forks execution for each child node. The last child does
not fork, but only assigns the last child node for processing.

Ignoring Non-Present Memory: Windows of segments
found to be non-present can be skipped by the scanner as
they provide no information for matching. This provides
two benefits: (1) it increases scanning efficiency and (2) it
reduces the possibility of false positives occurring that match
for non-present regions. When a non-present window is to
be scanned, the scanner simply updates the index to be read
to the next present page thus preserving scanner context.

Scanner Specific Considerations: Scanning with pre-
fix matching assumes that memory is scanned in a linear
fashion. This ensures all matching efforts for the previous
prefix has been complete prior to forking. Thus the scanner
should not peek at data ahead beyond the current window.
Reading data in non-linear fashion will result in walking
child nodes prior to matching efforts thus preventing sav-
ings from scanner effort deduplication.

3.5 Implementation
We prototype SEER using QEMU [1] v0.13.0 with KVM

Table 1: Average Impact on Throughput (MB/s)
and Response Time (Resp. Time) of SEER on both
the VM being scanned (i.e., snapshot and shipped)
and other VMs on the same host.

VM
Impact

MB/s
Resp.
Time

Snapshot
Time

Data
Shipped

Scanned 8.02% 9.14% 4.90 sec 153.4 MB
Non-

Scanned
0.70% 0.76% 4.48 sec 140.4 MB

virtualization software as the host. Our host is Ubuntu 12.04
64-bit and VM environments are Windows 7 SP1 64-bit.

The memory extractor and scheduler are configured to
allow both storing complete memory segments to network
storage or sending only unique data windows as discussed in
Section 3.2.3. For our evaluation, we save complete memory
segments to allow for better support for evaluating different
configurations.

SEER requires minor modifications to virus scanner soft-
ware to enable best efficiency and accuracy. Thus, we adapted
ClamAV, a popular open source virus scanner, to the SEER
architecture with minimal modifications by hooking I/O re-
quests through a shared library. For example, read requests
for scanned memory segments are intercepted and return
specific data based on the current node. If a read request
crosses a scan tree node boundary, the process can immedi-
ately fork and return the appropriate values for each read.
ClamAV virus definitions for PE/COFF binaries support
context aware definitions. For example, virus definitions can
target specific sections for binaries. The sections found in bi-
nary disk files reside at different locations in memory as sec-
tions are often page aligned while sections on disk are block
aligned. Thus we modify how ClamAV interprets PE/COFF
files so that sections are aligned correctly with memory. In
total, we only modified 9 lines of ClamAV code to enable
memory virus scanning with SEER.

4. EMPIRICAL EVALUATION
We evaluated SEER on an IBM System X server with a

Xeon E5450 Quad-Core CPU with 32GB RAM. The server
hosts Window 7 SP1 64-bit VMs configured with 1GB RAM
and 1 VCPU with QEMU/KVM as the host. An IBM
System X server with an AMD Quad-Core Opteron 2384
and 32GB RAM was used for scheduling scans, storing,
and scanning data. A third IBM System X server with an
AMD Quad-Core Opteron 2384 and 16GB RAM was used
to benchmark the host with VMs. These machines are in-
terconnected via two 10Gbps switches, one managing public
network and one for management network.

We investigated the impact of SEER’s components across
the scanning process. First, we performed benchmarks on
host and guest VMs to investigate the impact of fast snap-
shotting and shipping memory. Next, we investigated at
SEER’s impact on matching efforts and total scan times un-
der varying conditions, configurations, and caching. Finally,
we evaluated SEER’s ability to find malware in memory and
discuss false positives.

4.1 SEER Impact on Guest VMs
The guest VM is momentarily paused to create the logical

copy for carving and shipping. We measured the average
time a VM is paused at 0.2112 seconds with a standard

deviation of 0.07359 seconds.
We measured the impact of VM snapshotting and data

shipping (i.e. phase 1) for VMs being scanned and co-located
VMs that are not scanned. We used SpecWeb’2009 [21] to
simulate a webserver under load to measure the reduction in
throughput (MB/s) and response time for a single guest VM
(i.e. VM under test). The VM under test was configured
with IIS, ASP.Net, and the SpecWeb banking application.
SpecWeb was configured to simulate 200 simultaneous users
making at least one request every second. The benchmark
was run under three conditions: 1) no VMs on the host in
phase 1, 2) the VM under test in phase 1, 3) the VM under
test is co-located with VM in phase 1. Table 1 contains the
results. A VM can expect an 8.02% reduction in throughput
and a 9.14% reduction in response time during the 4.9 second
phase 1. A co-located VM not scanned can expect a 0.7%
reduction in throughput and 0.76% in response time during
phase 1. We note here that the average amount of data
shipped was 153.4 MB and 140.4 MB for these configurations
however this number is highly dependent on the processes
and services running. The average time to snapshot and ship
the data was less than 5 seconds under load. The majority
of time was spent shipping data.

4.2 Scanned Data and Scan Times
We investigated SEER under the following configurations:

Naive, Prefix Matched with Normalization (PMN), and
Prefix Matched Normalization ignoring Non-Present data
(PMNP). Naive refers to an unmodified ClamAV using
full segment hashes to identify previously scanned segments.
PMN provides the potential savings of adopting our tech-
niques for host based memory scanners. PMNP shows the
most efficient configuration for scanning memory that can
be both present and non-present data.

PMN and PMNP configurations were tested with differ-
ent windows sizes to investigate window size impact on effi-
ciency. For the smallest window, we used 4KB. This natu-
rally maps to present/non-present page data. We also used
different multiples of 4KB aligned windows. The Naive con-
figuration does not have a window size but hashes the entire
memory segment to identify duplicates.

We configure scanning to be performed serially on a single
processor under all above configurations. While prefix based
scanning is naturally parallelizable, we use a single processor
to avoid unfairly biasing in favor of SEER.

To investigate potential savings under different working
conditions, we scanned VMs under three different operat-
ing environments: (1) idle machine after booting to login,
(2) a loaded webserver running IIS and MySQL with 100
simulated simultaneous clients navigating a PHPBB web
application, and (3) VMs running a set of the following
unique GUI applications: IDA Pro, Chrome, Internet Ex-
plorer 64-bit, Notepad, Windows Update, IIS Administra-
tor, WampServer Installer, OllyDBG, Process Monitor, and
Visual Studio Express 2010. All workloads are run on the
same VM image. Workload (2) looks to investigate the po-
tential impact of a high number of reads and writes but
similar number of processes as workload (1) without loading
into the Windows desktop. Workload (3) pertains to loading
the desktop environment to investigate the impact of unique
processes on the amount to scan and scan times. To remove
non-deterministic nature of memory, carving and scanning
were done on static snapshots of memory for each operating

Table 2: Average cost of snapshotting and shipping VM memory for remote scan.
1 VM 10 VMs

Cold Cached Cold Cached
Type of VM Time Shipped Time Shipped Time Shipped Time Shipped

Login 6.62 Sec 223.8 MB 6.07 Sec 46.39 MB 5.89 Sec 140.0 MB 5.47 Sec 37.63 MB
Webserver 7.26 Sec 325.1 MB 5.85 Sec 76.24 MB 6.42 Sec 155.4 MB 5.29 Sec 36.56 MB

Profiled 8.73 Sec 382.0 MB 8.23 Sec 137.2 MB 7.79 Sec 239.9 MB 7.39 Sec 111.67 MB

(a) Boot to login (b) Loaded IIS webserver (c) Unique GUI applications

Figure 4: Percent Data savings and to scan for a single VM. X-axis is window size.

environment. We took 10 snapshots for each workload type
and incremental snapshots for all 10 at 5 minute intervals.

We detail the data savings and total scan times for scan-
ning both a single machine and across multiple machines.
Using multiple machines looks at potential savings of match-
ing prefixes across machines. During scanning, memory seg-
ment data is read off the disk and provided to the scanner
for analysis. Table 2 shows the average cost for snapshots
and data shipping of each operating environments for both
a single VM snapshot (i.e. 1 VM) and all 10 VM snapshots.

Data Saved/Scanned: Figure 4 shows the amount of
data scanned and saved for a single VM instance across
workloads. The x-axis shows the windows sizes in bytes.
We see that naive hashing can save 12-14% of data from
being scanned across all workloads. For PMN, we see the
window sizes have little effect on the amount of data scanned
with a savings of 40-45%. PMNP shows the greatest savings
of 80-90%. Window sizes have a small impact on PMNP at
5% impact as a result of the smaller windows being able to
identify more non-present regions. The differences between
Figures 4(a) and 4(b) show that a busier machine does not
impact Prefix Matching performance. In fact, we saw that a
busy machine had an additional savings of ≈5%. For Figure
4(c), we see that more data needs to be scanned as more
libraries and processes are loaded and run. This will affect
the total time to scan a VM.

Figure 5 shows the percentage of data scanned for each
VM workload as more VMs are added to be scanned. As a
result, the tree encodes prefixes across multiple VMs allow-
ing the potential prefix matching between VMs. We remove
the variable window size and set it to 4KB across each scan
as the previous figure indicates windows sizes have little im-
pact on percent data to scan or save.

For the idle machine at login and the loaded webserver,
the graph shows additional savings by adding VMs to scan
at ≈20% and ≈60% for Naive and PMN. PMNP has little
additional savings by adding VMs to scan.

For the unique GUI based tests, we see no additional sav-
ings across VMs. This is a result of different libraries and

processes being loaded for different applications. This indi-
cates that adding VMs to scan only provides benefit when
the VMs being scanned are running similar applications.

Total Scanning Time: SEER adds processing time over-
head which needs to be accounted when evaluating the per-
formance of scanning. The overhead of SEER can be found
from building the scan tree and forking the scanner thou-
sands of times. To investigate the impact of this overhead,
we scan the memory segments for all of the above configu-
rations to investigate the wall time savings of using SEER.

Figure 7 depicts the per VM total scan times across dif-
ferent configurations. Each graph breaks down the costs
for pre-processing (i.e., prefix matching and storage), fork-
ing scanner processes, and scanning. Across graphs we can
see that the window size impacts total scan times by in-
creasing pre-processing overhead. For PMN configurations,
a 4KB window adds 1.5-2 minutes of scan time compared to
a window size of 32KB. For PMNP, a 4KB window still adds
additional overhead, but this is mitigated by savings during
scanning. Overall, PMNP reduces the total scan time by
62-72% compared to Naive for a single VM. In line with our
data saving results, Figures 7(a) and 7(b) show little differ-
ence in total scan time under different workloads. Figure
7(c) has a larger total scan time due to the difference in the
amount of data scanned.

Figure 6 depicts the scan times across multiple VMs for
a window size of 32KB as it provided the most scan time
savings for a single VM as per the previous graph. The
data shows that by adding more VMs, the total savings of
PMN becomes ≈46% more efficient then Naive for the same
workload. On the other hand, PMNP has little extra savings
by adding additional VMs at 73.5% total scan time savings
over Naive for the same workload.

The overhead associated with ”Pre-Process” phase is inde-
pendent of the virus scanner complexity. Thus, the results
discussed above represent the computational and time sav-
ings when adapting a virus scanner containing the same com-
plexity as ClamAV. If a more complex scanner is adapted,
the savings is expected to be greater than the results above.

Figure 5: Percent Data to scan as VMs are scanned
together. Windows size fixed to 4KB.

Figure 6: Total scan time across multiple VMs. Win-
dow sized fixed at 32KB.

(a) Boot to login (b) Loaded IIS webserver (c) Unique GUI applications

Figure 7: Total scan time for single VM under different loads and configurations.

Figure 8: Percent data savings and to scan for warm
cache Boot to login VM. X-axis is window size.

Caching: After a VM has been scanned, hashes and sta-
tus information of the scanned memory segments can be
cached to prevent re-scanning identical segments in the fu-
ture. We looked at the effectiveness caching segment hashes
for future scans. Figure 8 and Figure 9 depict the benefits
of warm caching for the “Boot to Login” configuration. Fig-
ure 8 shows a reduced percent data savings between Naive
and PMN with a difference of 5-10% while PMNP and Naive
have a savings difference of about 25-35%. Figure 9 shows
the scan times for PMN and Naive were equal due to the
overhead of pre-processing and forking. However, we still
see a ≈50% reduction in scan times for PMNP at a window
size of 32KB. We found similar results for both the loaded
IIS server and GUI application configurations.

Write Working Set: During the Pre-Process phase in
Figures 7 and 9, the QEMU process copy remains resident
in memory and the guest VM continues to run. During
this time, Copy-On-Write in the host is managing the Write
Working Set, set of memory pages which have changed since

Figure 9: Total scan time for Boot to login VM with
a warm cache.

forking. If the Write Working Set becomes too large, host
memory can become depleted due to the dynamic nature of
memory. We observed that our Write Working Set changes
at rate of 100-300 MB per minute for the first minute. Given,
the snapshot and shipping time is typically 4-10 seconds, the
Write Working Set is not a concern.

4.3 Malware Identification/False Positives
SEER’s effectiveness at identifying malware in memory is

dependent on the adapted virus scanner’s signatures. How-
ever, we still wish to verify the SEER correctly extracts
memory segments that map to existing virus signatures for
memory only malware and file based malware and investi-
gate false positives using existing signatures.

To investigate ClamAV’s ability to extract segments to
find malware using existing signatures, we compromised one
VM with the file based malware Cerberus RAT and another
VM with the Memory-Only Malware Meterpreter. Both
malware were configured to infect explorer.exe. SEER suc-
cessfully found both malware running in the memory of the

Table 3: Malware samples from malc0de.com by
type identified by SEER.

Malware Types # Samples

Trojan.Adload 2
Trojan.NSIS.Agent 7
NSIS.Clicker.Agent 1

W32.AdInstall 1
Trojan.IRC.Zapchast 1

WIN.Trojan.DarkKomet 1
Trojan.Adload 1
Adware.Cpush 1

Trojan.Spy 2

Total 17

explorer.exe process showing that SEER can be used to iden-
tify both file-based malware and Memory-Only-Malware.
We then collected 652 samples of malware from
malc0de.com [13]. The samples were scanned with an un-
modified ClamAV and 60 samples were identified as Mal-
ware. 17 samples were successfully run in a guest VM. SEER
was able to correctly identify all 17 samples of malware from
memory. Table 3 shows the malware types scanned identi-
fied by ClamAV.

To investigate false positives, we recorded all segments
identified as malware by our modified ClamAV across each
benign scan configuration. This set represents the false pos-
itives. We found all observed false positives can be cate-
gorized into two types. First, ClamAV marked host based
virus scanner definitions as malicious. Specifically, ClamAV
identified Windows Defender virus definitions loaded into
memory as malware. On disk these definitions files are ob-
fuscated thus do not trigger false positives. This problem
can be addressed by white listing host scanner processes in
memory. The second false positive type occurs from overly-
broad ClamAV signatures which use MD5 hashes of zeroed
data as virus definitions. We found 154 out of 2,056,340
MD5 signatures matched only zeroed data. These signatures
should not be used for memory scanning. Upon removing
these signatures from the definitions database and whitelist-
ing scanner processes, no false positives were triggered.

5. DISCUSSION
Deploying SEER: SEER shows the best performance

using PMNP configuration with a window size at 32 KB.
The performance of PMNP is highly dependent on mem-
ory segments containing non-present data. If adapting Pre-
fix Matched scanning for a host based memory scanner,
non-present information is not encountered and thus per-
formance would be comparable to PMN.

Security and Privacy Concerns: Memory contains the
entire running state of a machine and thus contains very
sensitive information such as encryption keys, browser data,
etc. SEER extracts memory segments such that finding sen-
sitive data may be easier for malicious parties. For example,
a malicious party can quickly identify the webserver process
which is known to contain stored SSL certificates. Thus,
care must be taken when storing memory segments prior to
scanning and properly removing benign data after analysis.

Virus scanners themselves have been known to be a target
for attack [17]. Since SEER accesses sensitive data across
potentially many VMs, care should be taken to ensure com-
promise of the SEER scanner itself is mitigated and identifi-

able. The simplest solution would be to isolate the scanner
to a monitored machine and network.

Alternative Operating System Support: Our cur-
rent implementation of SEER only supports Windows en-
vironments. However, SEER can support other operating
systems by porting memory carving techniques for guest
operating systems. We believe this to be a straightforward
porting effort for well-known operating system structures.
For example, Linux have structures called virtual memory
areas that map directly to memory segments. For unknown
operating systems, VMI techniques can be used to identify
internal process structures and virtual memory [6].

Limitations: Currently, SEER does not attempt to ex-
tract paged-out memory from VM page-files or swap parti-
tions. While it is technically feasible to extract paged-out
memory from disk files, the overhead associated with extrac-
tion can have a significant negative impact on both host and
guest VM operations. As a result, malware can attempt to
avoid scanning by hiding in paged-out regions of memory
which can cause false negatives. However, we argue that
hiding malware in swap is non-trivial as (1) malware must
use a deterministic mechanism to force the operating system
to page out malicious content, (2) the deterministic mech-
anism must be in memory thus providing an indicator for
hiding, and (3) scanning of memory cannot be bypassed.

SEER relies on memory forensic techniques to find and
walk kernel data structures to extract memory segments.
These techniques are commonly used by memory forensic
tools [24] and popular Virtual Machine Introspection (VMI)
solutions [6, 9]. However, walking kernel data structure is
potentially vulnerable to Direct Kernel Object Manipula-
tion (DKOM) attacks [3]. Unfortunately, identifying and
preventing all DKOM attacks remains an open problem.

SEER provides detection of memory compromise but not
protection. Thus, SEER cannot prevent infection of well-
known malware or exploits. While security products often
protect against infection by hooking file operations, exploita-
tion commonly uses memory only techniques. As a result,
security products can be disabled without notification once
an exploit has code execution.

Finally, there is concern that attackers can allocate large
memory segments by simple virtual memory allocation.
SEER mitigates this potential impact by providing page sta-
tus to the scanner to bypass non-present memory. To force
SEER to scan data, the attacker must fill allocated mem-
ory with random data thus requiring the scheduler to store
unique data. However, this process would deplete system
resources exposing malicious activity.

Using Existing Virus Scanner Signatures: We show
in our evaluation that existing signatures for file based scan-
ning can be used to identify malware in memory. This ob-
viates creating all new signatures to adapt to memory scan-
ning. However, the effectiveness for matching viruses is de-
pendent on the correctness and precision of signatures. Fur-
thermore, signature based scanning has known limitations
and thus SEER suffers from the same limitations.

6. RELATED WORK
Jiang et al. [9] provided virus scanning for individual vir-

tual machines by scanning files on running Virtual Hard
Drive (VHD) and physical memory from the hypervisor. Un-
fortunately, scanning from the hypervisor can impact host
and VM performance. Also, scanner vulnerabilities can lead

to complete system compromise putting other VMs on the
host at risk [17]. SEER instead performs scanning off host
in an isolated environment while scanning virtual memory
to correctly match virus definitions.

Wei et al. [25] presented scanning offline logical VHDs
stored in a customized deduplicated image library. The au-
thors were able to show a reduction in virus scanning ef-
forts by only scanning unique files once across all logical
VHDs. Similarly, Soules et al. [20] discussed how to effi-
ciently schedule virus scanning for an enterprise network by
scanning unique files only once. These approaches rely on
the static nature of files on disk to reduce scanning efforts.
However, SEER instead focuses on efficiently scanning dy-
namic memory for live running virtual machines.

Oberheide et al. presented CloudAV which describes how
to increase the effectiveness of file virus scanning by using
multiple pieces of scanning software [17]. Services such as
VirusTotal, Jotti, and NoVirusThanks provide multi-scanner
virus scanning similar to CloudAV without an end client.
CloudAV and similar tools rely on data files being simi-
lar across machines and thus only unique files need to be
scanned. However, the authors do not discuss how to han-
dle dynamic data. SEER instead provides a new technique
to increase scanning efficiency of memory.

Trend Micro recently released a VMWare appliance called
“Deep Security”capable of agentless virus scanning of virtual
machine files using a central virtual appliance for VMWare [4].
Unfortunately, Deep Security only supports file based scan-
ning and relies on the static nature of files to enable scalabil-
ity. In contrast, SEER tackles the hard problem of enabling
virus scanning of highly dynamic data.

7. CONCLUSION
In this work we proposed SEER, an architecture for en-

abling Memory Virus Scanning-as-a-Service for virtualized
environments. SEER overcomes several challenges of mem-
ory scanning by transparently and efficiently scanning mem-
ory outside of the context of the analyzed VM. SEER quickly
and correctly acquires virtual machine memory and we show
in the empirical evaluation our technique has minimal im-
pact on VM operations and hosting environments. We pro-
pose a new approach for scanning memory by normalizing
memory, matching similar prefixes across memory, and then
scanning based on prefix data. Our results show that our
approach has a 72% reduction in wall time and scanning ef-
forts compared to existing naive scanning approaches. Our
approach can be directly applied to existing host based mem-
ory scanners to reduce scanning efforts by up to 46%.

8. REFERENCES[1] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the annual conference on
USENIX Annual Technical Conference, 2005.

[2] Antonio Bianchi, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Blacksheep: detecting
compromised hosts in homogeneous crowds. In
Proceedings of the 2012 ACM conference on Computer
and communications security, 2012.

[3] Jamie Butler. Dkom (direct kernel object
manipulation). Black Hat Windows Security, 2004.

[4] Agentless security. Trend Micro.
http://www.trendmicro.com/cloud-content/us/
pdfs/business/sb_vmware-agentless-security.pdf.

[5] Brendan Dolan-Gavitt. The vad tree: A process-eye
view of physical memory. Digit. Investig., September
2007.

[6] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich,
Jonathon Giffin, and Wenke Lee. Virtuoso: Narrowing
the semantic gap in virtual machine introspection. In
Proceedings of the 2011 IEEE Symposium on Security
and Privacy, SP ’11, 2012.

[7] Jason Gionta, Ahmed Azab, William Enck, Peng
Ning, and Xiaolan Zhang. Dacsa: A decoupled
architecture for cloud security analysis. In Proceedings
of the 7th Workshop on Cyber Security
Experimentation and Test. USENIX, 2014.

[8] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan
Savage, Alex C. Snoeren, George Varghese,
Geoffrey M. Voelker, and Amin Vahdat. Difference
engine: harnessing memory redundancy in virtual
machines. Commun. ACM, 53(10):85–93, October
2010.

[9] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu.
Stealthy malware detection through vmm-based
”out-of-the-box” semantic view reconstruction. In
Proceedings of the 14th ACM conference on Computer
and communications security, 2007.

[10] Tomasz Kojm. Clamav, 2004.
http://www.clamav.net.

[11] Jesse Kornblum. Identifying almost identical files
using context triggered piecewise hashing. digital
investigation, 3:91–97, 2006.

[12] Michael Ligh, Steven Adair, Blake Hartstein, and
Matthew Richard. Malware Analyst’s Cookbook and
DVD: Tools and Techniques for Fighting Malicious
Code. John Wiley & Sons, 2010.

[13] Malc0de. Malc0de, 2007. http://malc0de.com.
[14] About the metasploit meterpreter. Offensive-security,

2012.
http://www.offensive-security.com/
metasploit-unleashed/About_Meterpreter.

[15] Ned Moran, Sai Omkar Vashisht, Mike Scott, and
Thoufique Haq. Operation ephemeral hydra: Ie
zero-day linked to deputydog uses diskless method.
FireEye, Nov 2013.

[16] NSSLabs. Endpoint protection products 2010 group
test summary. NSS Labs, 2010.

[17] Jon Oberheide, Evan Cooke, and Farnam Jahanian.
Cloudav: N-version antivirus in the network cloud. In
USENIX Security Symposium, pages 91–106, 2008.

[18] Fahmida Y. Rashid. Watering hole attacks scoop up
everyone, not just developers at facebook, twitter. PC
Mag, March 2013.

[19] Sans institute infosec reading room: What is code red
worm. Sans Institutue, 2001.

[20] Craig A.N. Soules, Kimberly Keeton, and Charles B.
Morrey, III. Scan-lite: enterprise-wide analysis on the
cheap. In Proceedings of the 4th ACM European
conference on Computer systems, 2009.

[21] Standard Performance Evaluation Corporation.
Specweb2009.

[22] Andrew Tridgell and Paul Mackerras. The rsync
algorithm, 1996.

[23] VMWare. Vmware vshield endpoint, 2010.
http://www.vmware.com/files/pdf/
vmware-vshield-endpoint-ds-en.pdf.

[24] The volatility framework: volatile memory artifact
extraction utility framework. Volatile Systems.

[25] Jinpeng Wei, Xiaolan Zhang, Glenn Ammons, Vasanth
Bala, and Peng Ning. Managing security of virtual
machine images in a cloud environment. In
Proceedings of the 2009 ACM workshop on Cloud
computing security, 2009.

