
iHTTP: Efficient Authentication of
Non-Confidential HTTP Traffic

Abstract. HTTPS is the standard protocol for protecting information
sent over the World Wide Web. However, HTTPS adds substantial over-
head to servers, clients, and networks [1, 2]. As a result, website owners
often pass on HTTPS and resort to only HTTP for hosting websites,
leaving clients and servers vulnerable to attacks [3, 4]. Techniques have
been proposed to only enable authentication and integrity of HTTP (re-
sponse) data [2, 5–7]. However, they all suffer from vulnerabilities and
poor performance. In this paper, we propose iHTTP, a new approach for
enabling lightweight, efficient authentication and verification of HTTP
(response) data. We adaptively handle different data encodings to allow
for better performance without effecting user experience. We introduce
a novel technique, Sliding-Timestamps, to allow iHTTP clients to au-
thenticate the freshness of response data to prevent replay attacks and
amortize signing costs. We also introduce Opportunistic Hash Verifica-
tion to reduce client public key operations required to authenticate full
web pages. We show in our experimental evaluation that iHTTP pro-
vides similar performance to HTTP, and higher throughput and lower
maximum response time than HTTPS for Client-Static data.

1 Introduction

HTTP [8] is the most popular protocol used to construct the World Wide Web
because it is lightweight, flexible, and scalable. However, HTTP provides no secu-
rity protection and as a result technologists have accepted HTTP over TLS/SSL
(i.e., HTTPS) [9] as the standard for providing authentication, integrity, and
confidentiality while sacrificing being lightweight, flexible, and scalable. Other
security protocols such as SHTTP [10] and HTTTPA [11] have also been pro-
posed; however, they suffer from similar flexibility and scalability problems. As
a result, data owners often choose HTTPS to provide data confidentiality and
HTTP to provide efficient data delivery.

While HTTP data is non-confidential, the integrity of HTTP data is still
very important. Recent research has shown that the lack of data integrity can
have averse effects on website owners and clients. For example, Vratonjic et al.
provided a case study of ad frauds in which HTTP web content was modified
on the fly to include or rewrite advertisements. The study estimated that a
WiFi hot spot with 100 users could raise $49,400 in annual revenue via HTTP
ad content rewriting [3]. Research by Stamm et al. demonstrated an attack on
HTTP called “Drive-By Pharming”, where a malicious javascript reconfigures
a victim router’s DNS to redirect clients to fake pages. As a result, attackers
are able to launch phishing attacks or present bogus data to clients [4]. Finally,

the Bahama Botnet was caught providing counterfeit searches to victims, which
altered ads and organic search results allowing for click frauds [12].

The discussion above highlights the distinct need to protect even non-sensitive
HTTP content from malicious modification. A simple solution is to enable HTTPS
for all websites. However, HTTPS adds substantial overhead to both the server
and the clients [1]. Furthermore, HTTPS does not support network caching,
which is known to significantly improve performance [13] and reduce upstream
bandwidth usage [2]. It is expected that the number of cacheable objects will
continue to grow as the web moves to providing a richer user experience [14].
There clearly exists a need to provide data authentication and integrity of HTTP
data without sacrificing flexibility and scalability as with HTTPS.

1.1 Previous Work

A viable solution to the above problems must have a minimal impact on per-
formance, flexibility, and scalability, which existing security techniques such as
HTTPS clearly lack. Towards this end, recent research has attempted to provide
lightweight integrity verification and authentication mechanisms for HTTP.

Web Tripwires was proposed to verify if web content has changed between
the server response and client rendering by embedding a javascript measure-
ment agent in HTML pages [15]. However, Web Tripwires provides no security
protection for the measurement agent itself and can be easily bypassed.

HTTPI provides authentication and data integrity of HTTP (response) data
by using a pre-established session key for keyed hashing of client requests and
server responses [6]. HTTPI sessions are described as long-lived with no indica-
tion of key management. This of course poses significant threats to the security
of the system [16]. Furthermore, the evaluation of HTTPI does not consider the
cost of TLS/SSL handshakes. Indeed, HTTPI in some cases can show perfor-
mance as poorly as HTTPS.

Lesniewski-Laas et al. used HTTPS to only provide authentication and in-
tegrity while enabling caching [5], which leads to a significant reduction in the
origin server loads. However, this technique requires the modification of and the
trust in network caches, making it difficult to adopt.

To decouple authentication and integrity from key management, SINE seeks
to provide data integrity and origin authentication by digitally signing HTTP
(response) data [2], which is signed once and used to serve many client requests
to enable network caching. However, SINE is vulnerable to replay attacks of
stale authenticated data, and does not support chunked transfer encoding as
introduced in HTTP 1.1. HTTPi further enables support of chunked transfer
encoding, and subsumes SINE by providing network caching and progressive
rendering of both chunked and non-chunked data [7].

SINE and HTTPi are promising in enabling data origin authentication and
integrity without key management. However, they suffer from issues that seri-
ously undermine their usability. SINE enables the caching of authenticators for
long periods of time by setting a static expiration. This feature allows attackers
to launch replay attacks using non-expired data. In other words, clients cannot

2

verify the freshness of data. HTTPi attempts to address the freshness issue by
requiring that each response to a client request, or a chunk of a response, be
digitally signed, thus severely impacting the server performance. In both SINE
and HTTPi, clients are required to perform at least one public key operation per
server response. As a result, clients potentially are required to make hundreds
of public key operations to render a single HTML page.

1.2 Our Contributions

Among the previous research, SINE and HTTPi are the most promising can-
didates for lightweight HTTP integrity protection. However, both fail to ad-
dress the issues outlined previously. In this paper, we propose a new approach
called iHTTP to address these problems. In particular, we seek an authentication
scheme with performance similar to HTTP. Our approach is inspired by SINE
and HTTPi. However, we propose new techniques to achieve stronger security
features without sacrificing performance.

We observe that HTTP response data can be categorized into two types:
Client-Static data, and Client-Unique data. Client-Static data refers to site re-
sources which are not specific to a client. For example, many clients requesting
a single image via a common URL will receive the same HTTP content. Client-
Unique data refers to response data that is directed to a specific client. For
example, a client requesting a common URL which returns the client’s WAN IP
address will return unique HTTP content. In this case each response is unique to
the client who requested it. In this paper, we focus on techniques to authenticate
and verify Client-Static data.

iHTTP adopts three techniques to achieve lightweight authentication of HTTP
response data. The first is to handle encoding data adaptively. HTTP 1.1 data
can be encoded in two ways: Content and Transfer [8]. We observe that servers
and clients handle encoded data in different manners. For example, compressed
data is buffered while non-compressed data can be processed as a stream. We
introduce a rule to adaptively apply existing integrity techniques based on encod-
ing format. By processing unique encodings differently, we can reduce the server
response size and the number of cryptographic operations without sacrificing
flexibility or user experience.

The second technique is the decoupling of freshness verification and signature
generation. Previous signature-based HTTP integrity techniques [2, 7] tightly
couple data freshness and signature generation. As a result, these techniques
either suffer from performance issues or are susceptible to replay attacks. To ad-
dress this issue, we present a technique called Sliding-Timestamps, which decou-
ples signature generation from data freshness authentication by using authen-
ticated hash chain values to calculate an extended timestamp. Servers simply
need to release specific hash values to extend the freshness of signatures, which
foregoes signing data to update freshness.

The third technique is aimed at reducing the cost of client verification.
Signature-based HTTP integrity techniques require clients to verify at least one
signature per response. As a result, clients may be required to verify hundreds

3

of responses to render a single web page, which hinders user experience and re-
quires unnecessary computation. Towards this end, we present a technique called
Opportunistic Hash Verification to provide clients an opportunity to verify re-
sponses without signature verification. Using the descriptive nature of HTML,
servers can provide contextual authentication information about anticipated fu-
ture responses. This will reduce client overhead for rendering complex web pages.

We validate iHTTP through a prototype implementation and experimental
evaluation. In our experiments, we compare iHTTP with existing standard pro-
tocols, HTTP and HTTPS, and the most recent signature-based HTTP integrity
technique HTTPi. We show that iHTTP outperforms HTTPS and HTTPi sig-
nificantly. Furthermore, our results show iHTTP achieves similar throughput to
native HTTP for Client-Static data. We also provide an evaluation of the impact
of Client-Unique data on signature-based HTTP techniques.

The rest of the paper is organized as follows. Section 2 discusses our design
goals and assumptions. Section 3 reviews some signature-based HTTP integrity
techniques, on which iHTTP is based. Section 4 presents the iHTTP protocol in
detail. Section 5 provides security and performance analysis of iHTTP. Section 6
reports the implementation and evaluation, and Section 7 concludes this paper.

2 Design Goals, Assumptions, and Threat Model

Design Goals: The high-level design goals for iHTTP are given below:

– Data Origin Authentication: Clients should be able to verify whether the
received iHTTP data was generated by a trusted identifiable source.

– Data Integrity: Clients should be able to verify whether the received iHTTP
response data has been modified by intermediate parties.

– Content Freshness: Client should be able to verify whether the received
iHTTP response data is “out of date”.

– Low Performance Impact: iHTTP will have minimal impact on servers and
clients, allowing for high throughput and low response time.

– Flexibility: iHTTP should allow caching of iHTTP data without modifying
network caches or proxies.

– Standards Compatible: iHTTP should be HTTP 1.1 [8] compatible as it is
currently the latest HTTP specification and widely adopted on the Internet.

Assumptions: We assume that our client and server machines are trusted
and server private keys are protected. We also assume that the clocks on client
and server machines are loosely synchronized. We assume data sent over iHTTP
is non-confidential as our goal is to provide efficient authentication and integrity
protection of HTTP data. Finally, we assume that iHTTP is serving Client-Static
data as opposed to Client-Unique data.

Threat Model: We assume that attackers have the ability to intercept,
add, modify, delete, reorder, and store all data sent between the client and the
server. Attackers can sign data with authentic certificates not associated with
the origin server’s domain and/or IP address. Finally, attackers can slow down

4

the delivery of data for limited periods of time. The client assumes a reasonable
response time from the server.

We consider the following attacks out of the scope of this paper: Attacks
aimed at disrupting network availability or undermining cryptographic primi-
tives. Such attacks constitute general attacks on network implementations and
protocol weaknesses. We also do not defend against vulnerabilities targeting web
applications or scripting software.

3 Preliminaries

In this section we discuss two signature-based HTTP integrity techniques, naive
and progressive authentication, presented in [2,7] for the authentication of HTTP
content. These techniques form the foundation of the new techniques we develop
in this paper. The notation used in this paper is included in Figure 1. Note
that authenticator refers to the collective group of information sent to clients to
authenticate and verify HTTP responses.

K – Private Key provided by Certificate

Signk{X} – Sign X with private key K

H(X) – Hash of X

A.t – Timestamp

A.e – Expiration

A.u – Object’s URL

A.l – Message length

HTTP – HTTP Response

HTTP.Headers – HTTP Dependent HTTP headers

HTTP.Body – HTTP response body

HTTP.Content – Response Specific Authentication Data

SH – Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content)}

Authenticator – SH, A.t, A.e, A.u, A.l, HTTP.Content

Fig. 1. Notation

HTTP Response

Non-Critical Headers

Message Body

HTTP.Content

Content-Type,

Content-Encoding,

Transport-Encoding
HTTP.Headers

A.t, A.e, A.u,

A.l

Hash/Sign

Authenticator
A.t, A.e, A.u, A.l

Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content)}

Fig. 2. Naive Authentication

Naive Technique: With the naive technique, a server first buffers the
HTTP response prior to sending data. The server then generates the authen-
ticator specific to the HTTP response by signing the hash of a server times-
tamp (A.t), expiration (A.e), requested URL (A.u), and HTTP response body
(Signk{H(A.t|A.e|A.u|HTTP.Headers|HTTPBody)}). The authenticator is then
sent as an HTTP header along with the associated timestamp, expiration, and
URL. Clients can then verify the integrity of the HTTP response by first buffer-
ing the HTTP message, performing one hash operation over the data, and one
(public key) signature verification operation. Figure 2 depicts this approach.

The Naive Technique lacks progressive processing and rendering support,
which hinders user experience. Thus, Progressive Authentication was proposed
to overcome this shortfall [7].

Progressive Authentication of Data Streams: Progressive Authenti-
cation enables the authentication of data streams by providing hashes of data

5

h
a

s
h

h
a

s
h

h
a

s
h

HTTP Response

Non-Critical

Headers

DivideMessage Body

HTTP.Headers
HTTP.Headers

A.t, A.e, A.u,

A.l

Hash/Sign

Authenticator

X1

h
a

s
h

S1

HTTP.Content

S4S3S2

(a) Progressive Authentication

HTTP Response Part

Divide

h
a

s
h

h
a

s
h

h
a

s
h

HTTP Response Part

Non-Critical

Headers

Divide
Chunk Encoded

HTTP Body

HTTP.Headers
HTTP.Headers

A.t, A.e, A.u,

A.l

Hash/Sign

Authenticator

X1

h
a

s
h

S1

HTTP.Content

S4S3S2

Chunk Encoded

HTTP Body

Chunk Part

Headers

h
a

s
h

h
a

s
h

h
a

s
h

X2

h
a

s
h

S1 S4S3S2

X1

A.t, A.e, A.u,

A.l

Hash/Sign

Authenticator

HTTP.Content

(b) Chunked-Transfer Authentication

Fig. 3. Progressive Authentication Techniques

blocks as part of the authenticator [7]. To enable progressive rendering, the
server first divides the entire HTTP response body into equally sized segments
(S1, ..., Sn). Each segment is then hashed to get H(Si) and the hashes are con-
catenated into a list X1 = H(S1)|...|H(Sn). The signature for the response is
generated as Signk(H(A.t|A.e|A.u|A.l|HTTP.Headers|X1)) = SH1 [7]. The au-
thenticator for progressive authentication includes (X1, A.t, A.e, A.l, SH1) and is
sent along as an HTTP header. Upon receiving the authenticator, the client im-
mediately verifies X1, A.t, A.e, A.l, and HTTP.Headers via the signature SH1.
Once the authenticator is verified, X1 can be used to immediately authenticate
any segment upon arrival [7].

Chunked-Transfer Support: Chunked Transfer-Coding was introduced
in HTTP 1.1 to allow for servers to send partial information to clients without
knowing the response size [8]. Chunked-Transfer Authentication enables support
of chunk encoded data by generating an authenticator for each individual chunk.
Essentially each chunk has a unique authenticator that protects the chunk data
and chunk order. The authenticator of the first chunk is added as an HTTP
header while the authenticators of subsequent chunks are embedded as part of
data [7]. Figure 3(b) shows the process for creating the authenticator for chunk
encoded data. Please refer to [7] for details.

4 Our Approach - iHTTP

iHTTP is an HTTP integrity approach for efficiently enabling HTTP authenti-
cation and integrity, preventing replay attacks, and reducing overhead for both
clients and servers. iHTTP achieves these goals by adaptively handling data en-
coding, enabling Freshness Authentication with Sliding-Timestamps, and pro-
viding Opportunistic Hash Verification.

In the following, we first describe a generic authenticator generation process
for handling different data-encodings, then expand the authenticator generation

6

process to add Sliding-Timestamps to enable authenticator caching, and finally
describe Opportunistic Hash Verification to reduce client verification cost.

4.1 Authenticator Generation

This subsection outlines the iHTTP authenticator content and generation pro-
cess. Specifically, iHTTP adaptively uses the Naive and Progressive Authentica-
tion techniques to enable better performance by reducing cryptographic opera-
tions and payload size.

iHTTP uses cryptographic hash and digital signature to generate message
authenticators. Several key pieces of information are required for providing au-
thentication, including 1) a timestamp (A.t) used to verify the authenticator
generation time, 2) an expiration timestamp (A.e) for preventing reuse of ex-
pired authenticators, 3) the requested URL (A.u) to link the response data to
the requested URL, 4) a subset of HTTP headers (HTTP.Headers), 5) content
length (A.l), and 6) a message content identifier (HTTP.Content) referring to
a unique identifier that is generated based on the HTTP message body. Af-
ter HTTP.Content generation, the server hashes and signs the above items as
Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content)}. For simplicity we
refer to this collective group of data as an authenticator.

HTTP.Headers is included in the signature to ensure clients process re-
sponse data in the correct manner by verifying the response format and prop-
erties. This prevents data misuse attacks in which the client is persuaded to
handle data in a different manner than specified by the server. HTTP headers
are categorized into two groups: End-to-end or hop-by-hop. End-to-end must
be stored and forwarded by caches in the original form (with the exception of
Content-Length, which may be modified by network caches), while hop-by-hop
headers may be modified by caches [8]. Thus, all the non-modifiable headers in
the response are included as part of HTTP.Headers. To handle the exception
Content-Length, iHTTP uses A.l to verify the data length in the authenticator.

The Naive and Progressive Authentication techniques differ in the genera-
tion process for the message content identifier (HTTP.Content). We observe
that no single previous technique provides the best performance for generating
HTTP.Content over all data types, encodings, and formats. Thus we adap-
tively apply the two techniques to achieve the best performance for generating
HTTP.Content. Figure 1 contains the relevant notation and information with
regards to the authenticator.

iHTTP determines the optimal authentication technique for HTTP.Content
generation based on the response encoding. We observe that compressed re-
sponses require clients to buffer data prior to decompression. As a result, the
limitation of Naive Technique pointed out by [2,7] does not apply to compressed
data. By applying the Naive technique, iHTTP will reduce the number of hash
operations from O(n) to O(1) and decrease the authenticator size by 1.4% [7].
iHTTP determines if responses are compressed by checking for compression to-
kens located in the Content-Encoding and Transport-Encoding headers. If a
compression token is present, the Naive technique is used for the creation of

7

HTTP.Content, which consists of a SHA-1 hash of the HTTP message body.
Otherwise, Progressive Authentication is used for creatingHTTP.Content, which
is the concatenated list of SHA-1 hash segments representing the HTTP message
body.

An iHTTP server generates a new authenticator when 1) the content being
served for the requested URL has changed, or 2) when the authenticator expires.

Local Authenticator Caching: The techniques presented in this paper rely
upon locally caching the server generated authenticators. The Local Authenti-
cator Cache is only concerned with caching the latest generated authenticator
per requested URL. Thus, once a new authenticator for a URL is generated,
the previous URL specific authenticator can be discarded. Caching may be im-
plemented using many different techniques and data structures. Specific caching
implementations may provide better performance in different environments and
platforms. Thus, determining the optimal caching mechanism for Local Authen-
ticator Caching is orthogonal to this work.

4.2 Freshness Authentication

As discussed previously, authenticator caching is enabled using a static expi-
ration time. This presents a dilemma to iHTTP. If the expiration time for an
authenticator is set too long, an update to the content at the corresponding
URL may have occurred before the expiration time. As a result, an attacker
may replay the old data using the authenticator before its expiration time. This
can certainly be mitigated by using a short expiration time. However, a short
expiration time will result in frequent generation of the authenticators, which
involve expensive public key operations.

In the following, we present a freshness authentication technique that can
provide fresh authentication tokens with light overhead.

Sliding-Timestamp: The problem described above is a result of a tight
coupling between authenticator generation and the client URL request. The tight
coupling is due to the strong constraint of generating an authenticator to prove
freshness. Thus, it is desirable to provide authenticator freshness verification
without actually signing the authenticator data.

We propose to meet this goal by allowing the server to extend a given authen-
ticator’s timestamp using a server generated hash chain. The server generates the
hash chain at the time of authenticator generation and signs the commitment of
the hash chain to bind the hash chain and authenticator. Each intermediate hash
in the chain represents a calculated amount of time to extend the authenticator’s
timestamp. The one-way nature of hash chains allows clients to authenticate the
server’s decision to extend the timestamp without requiring the server to sign
the authenticator data again [17]. Figure 4 illustrates this approach.

The hash chain is created using a server generated random number N ,
the size of the chain n, and one-way cryptographic hash function H as X1 =
H(N), ..., Xn = H(Xn−1). The random number N is kept secret at the server;
this value can be used to calculate intermediate hash values. Xi represents the
ith hash in the chain. We consider the number of hash operations to generate Xn

8

X3 X2

A.t A.e
∆t

Xn Xn-1

Nonce

H
a

s
h

Hash Chain Generation

n-i=∆H

Extended Timestamp when Xi

is sent to the client

Xi-1Xi X1

Fig. 4. Sliding-Timestamp Generated using a Hash Chain

beginning with Xi as ∆H and we represent this process as H∆H(Xi) = Xn. We
introduce ∆t as a short server-defined configurable time-increment used for ex-
tending the authenticator timestamp. ∆t represents the time duration associated
with each hash operation. Using the above properties, the extended timestamp
is calculated by A.t +∆H ∗∆t, where A.t is the authenticator timestamp.

The server generates a hash chain during each authenticator generation. The
size of the hash chain, n, is determined by A.e−A.t

∆t . The server stores n, ∆t, N , and
Xn in the local server cache associated with each authenticator. The authentica-
tor signature is modified to include ∆t and Xn, i.e., the authenticator signature is
generated as Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content|∆t|Xn)}.
Prior to sending an HTTP response, the server must generate the appropriate Xi

to authenticate the freshness of the authenticator. Xi is calculated based on the
current server timestamp (c), the authenticator’s timestamp (A.t), ∆t, and size
of the hash chain (n). The server calculates i = n− d c−A.t∆t e and then generates
the ith hash of N as Hi(N) = Xi. (Alternatively, the server may pre-compute
all hash values and use each appropriately.) The server sends Xi, ∆H, ∆t, and
Xn as part of the authenticator.

K – Private Key provided by Certificate

Signk{X} – Sign X with private key K

H(X) – Hash of X

A.t – Timestamp

A.e – Expiration

A.u – Object’s URL

A.l – Message Length

N – Server nonce used to build the hash chain

n – Hash chain size

Xi – the i
th
 hash generated in a hash chain

∆H – Number of hash operations to convert Xi to Xn

∆t – Server defined time parameter to determine an extended timestamp

HTTP.Headers – iHTTP Dependent HTTP headers

iHTTP.Content – Data identifiers for authentication/integrity techniques

SH – Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|iHTTP.Content|Xn|∆t)}

Authenticator – SH, A.t, A.e, A.u, A.l, iHTTP.Content, ∆t, Xi,∆H

Fig. 5. iHTTP Authenticator

Figure 5 contains the
updated final authenticator
and signature. The server
generates a new authentica-
tor only if HTTP.Content
for an HTTP response and
locally cached authentica-
tor do not match or if the
authenticator expires. Oth-
erwise, the server uses the
locally cached authentica-
tor for the response along
with the intermediate hash
chain valueXi to extend the
timestamp.

Prior to verifying Xi and the extended timestamp, the client first verifies
the authenticator contents via signature. To verify the extended timestamp, the
client first verifies Xi is a member of the hash chain rooted at Xj , where Xj is

9

a previously verified hash chain value for the same signature or Xj = Xn when
the authenticator signature has not been previously received. Xi is verified if
Xj = H∆H′(Xi) where∆H′ = ∆H−∆j and∆j is the number of hash operations
to generate Xn from Xj . If Xi is verified, the extended timestamp is calculated
by A.t + ∆H ∗∆t. The request is then proven fresh if the calculated extended
timestamp is greater than the request timestamp. If the authenticator is verified,
the client stores that last verified authenticator where ∆j = ∆H and Xj = Xi

for a unique URL.
Given Xi, the server provides Xi−1 to extend the authenticator timestamp

by ∆t. Since it is infeasible for third parties to compute Xi−1 from Xi given
the one-way property of cryptographic hash functions, the clients can be sure
only the server can provide Xi−1. As a result, this approach decouples the client
request and authenticator generation and allows authenticator caching to prevent
resigning when HTTP.Content matches the cache value for the requested URL.

Network Caching of iHTTP Objects: Servers may direct network caches
to store iHTTP data using standard HTTP 1.0/1.1 caching directives. In this
manner, no changes are needed by network caches to enable clients and servers
to use iHTTP. Thus, iHTTP can be adopted incrementally with gradual changes
to the underlying network infrastructure. However, iHTTP does require that the
server use cache-directives to allow for effective caching while enabling iHTTP
data freshness.

iHTTP uses the “must-revalidate” cache directive to force caches to reval-
idate every request with the origin server. This ensures the iHTTP server can
respond with an updated fresh authenticator for each request. When a NOT-
MODIFIED response is provided, the server will provide an updated authen-
ticator and Sliding-Timestamp. The cache can overwrite any changed headers
seamlessly and forward necessary data to the client [8].

Forcing network caches to query the origin server for each request does result
in an unnecessary request when the cached authenticator is fresh. For example,
two different clients may request the same file at the same time, resulting in
the same authenticator. This limitation is due to the fact that iHTTP does not
require cache modification. For caches wishing to handle iHTTP, caches can
calculate if the cached authenticator is fresh based on the Sliding-Timestamp
and bypass the origin request.

iHTTP also uses the “no-transform” directive to prevent caches from modi-
fying response data and a set of end-to-end headers, which would cause authen-
tication failure.

4.3 Opportunistic Hash Verification

In the above design, iHTTP clients have to authenticate each iHTTP response
via at least one expensive signature verification operation. HTML templates
often outline multiple HTTP objects required to render a full web page, which
results in multiple responses per page.

In HTTP, clients make two types of requests: initial requests and supporting
requests. Initial requests are associated with the top level document of any web

10

_h – SHA1 hash of the authenticator for the associated file

<html>

<head>

 <link rel="stylesheet"

 type="text/css"

 href="layout.css" />

</head>

<body>

<body>

</html>

Index.html

iHTTP Cache

Embed

References

Index.html

<html>

<head>

 <link rel="stylesheet"

 type="text/css"

 href="layout.css"

 _h=”AE123A685BA498EB049AB8A456CC373FE8C019BF” />

</head>

<body>

 <img src=”coolcat.png”

 _h=”499A24E188F1522F64EA46DCD13A384B5B5D93E8” />

<body>

</html>

Fig. 6. Opportunistic Hash Verification

page and will always require clients to verify the authenticator signature to
ensure freshness. Client supporting requests, on the other hand, are made for
supporting resources (e.g., iframes, images, javascript, css) required to render
the HTML page.

Note that the number of supporting resources required to render modern
websites is fairly large and continues to grow. For example, CNN.com contains
103 unique references to supporting files. Thus, enabling iHTTP for CNN would
require that clients perform 104 expensive signature verification operations (in-
cluding the initial request). This will pose a problem for resource constrained
clients. In the following, we propose an Opportunistic Hash Verification tech-
nique to reduce the number of client signature verification operations when au-
thenticating an entire web page.

Hash Embedding: The basic idea of Opportunistic Hash Verification is to
amortize the expensive signature verification operations at the client by match-
ing authenticated cryptographic hashes with client generated hashes based on
the received iHTTP responses. This approach uses the descriptive properties of
HTML to allow servers to provide contextual information about potential client
requests. Authenticating an HTML document in turn verifies the contextual
information and allows clients to bypass most signature verifications.

Specifically, the server will parse all responses containing HTML. HTML
tags that may generate additional client requests (i.e., link, img, script, iframe,
etc.) are located and each tag’s source value is used to search the authenti-
cator cache. The matched authenticator will be cryptographically hashed as
H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content|∆t|Xn) and the hashes are
embedded in the HTML as attributes of the associated tags. For example, Fig-
ure 6 depicts an HTML file which contains two supporting resources: a style
sheet and image. The server uses the “src” attributes of these resources to look
up the corresponding authenticator in the iHTTP local cache. The associated
authenticator is hashed and embedded as part of the HTML. Using the embed-
ded hash gives the client the opportunity to verify the expected authenticator
without a signature verification operation.

Upon receiving a response, a client hashes the authenticator content and
compares it with the verified embedded hash value (e.g., the “ h” attributes on

11

the right side of Figure 6) for the requested URL. If the hash values are equal,
the authenticator content is verified. To verify the freshness of the response,
the client then uses the Sliding-Timestamp technique presented earlier. If the
hash values match and the response is fresh, the HTTP.Content can be used
immediately to verify the message body. In the case when the hash values of the
authenticators do not match, the iHTTP client simply falls back to verifying the
authenticator via public key operation as the content of the requested file may
have changed in the short time between the server embedding the hash and the
sending the HTTP response to the client supporting request.

5 Analysis

This section provides an analysis of iHTTP, including the security properties
essential to the guarantees provided by iHTTP, the performance of iHTTP, and
its limitations.

5.1 Security Analysis

Data Origin Authentication: An iHTTP server signs authenticators with a
protected private key. The corresponding public key is certified by a trusted
Certificate Authority and provided to iHTTP clients. Using the verified server
certificate, clients can verify the authenticator signatures and thus verify that the
data originated from the server that possesses the certificate’s private key. Once
the authenticator is verified, HTTP.Content authenticates the message body
by matching one-way hashes of message content with HTTP.Content. When
the Opportunistic Hash Verification is used, authenticating HTML responses in
turn verifies the data origin of the supporting resources (e.g., iframes, images,
javascript, css) through the embedded hash values.

Data Integrity: Clients verify the integrity of data through signature verifi-
cations and a series of matching of hash values. The response signature allows the
client to verify the integrity of the authenticator data and HTTP headers. Once
verified, the client can then use the authenticated HTTP.Content field to verify
the integrity of the message body. When the Opportunistic Hash Verification
technique is used, the authenticated HTML allows clients to use the embedded
hash values to verify the integrity of the corresponding supporting resources.
In other words, the embedded hashes verify the integrity of the authenticator.
Part of the authenticator, HTTP.Content, can in turn verify the integrity of
the message bodies of these supporting resources. Any modification of either the
top level web page or a supporting resource will lead to a mismatch and can be
detected.

Freshness: Data freshness authentication is provided by the authenticator
timestamp (A.t) and the calculated Sliding-Timestamp (A.t+∆H∗∆t). Without
the knowledge of the private key of a server, an attacker will not be able to forge
an invalid authenticator timestamp without being detected. Moreover, due to
the one-way property of the cryptographic hash function H, the attacker cannot

12

forge the hash value Xi used to extend the timestamp, either, unless Xi was
released by the server. Assume the maximum clock difference between any client
and a server is δmax. The above analysis means that an attacker can hold an
authenticated timestamp valid for at most∆t+δmax long before a client identifies
it as out of date. Since the clients and the server are loosely synchronized and ∆t
is chosen by the server, both ∆t and δmax can be kept pretty small. Finally, note
that the attacker can generate negative influence only when the server modifies
the data at the requested URL after the authenticated timestamp is released.

5.2 Performance Analysis

Low Performance Impact: The performance of iHTTP is highly dependent
on the authenticator generation process. iHTTP uses Sliding-Timestamps to
assist in authenticator caching which amortizes the number of signature gener-
ation operations. As a result, iHTTP has both a throughput and response time
comparable to HTTP.

However, iHTTP impacts the size of the response due to the addition of
authenticators and embedded hashes. Thus, iHTTP requires more bandwidth
to send a response which will effect overall throughput. The actual cost of
iHTTP is dependent on the content encoding, hash size, and transfer coding.
For non-compressed responses, the authenticator size is dependent on HTTP
message content, or more precisely, Hashsize ∗ ContentSizeBlockSize . Transfer coding ap-
plies one authenticator for each chunk of a response. Unfortunately, the num-
ber of chunks per response is dependent on the implementation of the server.
Thus care should be taken when chunking data as the performance benefit
of chunking can be overshadowed by the cost of enabling iHTTP. Finally, en-
abling Opportunistic Hash Verification adds a hash value for each HTTP object
in a given HTML document. Hence, the size of the response is increased by
(NumberofUniqueReferences) ∗ (HashSize). This overhead is also specific to
the HTTP content.

Flexibility: iHTTP uses HTTP header directives to configure network caches
to store authenticators and HTTP responses while enabling data freshness. Fur-
thermore, iHTTP does not require changes to existing network infrastructure or
software. Caches wishing to natively handle iHTTP can further improve perfor-
mance, which will reduce server loads. Furthermore, no changes are needed for
server generation software such as PHP or ASP.NET to enable iHTTP.

Standards Compatible: iHTTP uses standard based configurations to
achieve compatibility (e.g., the use of standard HTTP headers to configure
caches). iHTTP also supports any combination of chunked and compression
encodings. In addition, iHTTP only requires minor modifications to clients and
servers. iHTTP does not require changes to the network infrastructure or caches,
and thus allows incremental deployment.

13

5.3 Limitation

As discussed previously, HTTP responses can be classified as either Client-
Unique or Client-Static. While iHTTP can correctly serve Client-Unique HTTP
responses, iHTTP, as well as other signature-based HTTP integrity techniques [2,
7], are not suitable to handle Client-Unique data for two reasons:

First, client-Unique responses can never be cached due to response data being
unique per client, which requires data to be signed for each response. As a result,
signature-based HTTP integrity techniques will perform at least as poorly as
HTTPS. Moreover, existing signature-based HTTP integrity techniques do not
provide mechanisms for allowing clients to authenticate response data as logically
correct. As a result, attackers or intermediate parties can redirect authenticated
fresh data to the wrong clients.

While iHTTP cannot efficiently handle Client-Unique data, Client-Static re-
sponses are naturally cacheable by network caches and do not suffer from this
vulnerability. Similarly, iHTTP and signature-based HTTP integrity techniques
do not authenticate or verify cookies associated with requests or responses. Thus,
servers and clients cannot trust received cookies. However, cookies are widely
used by servers to provide a unique client experience, and hence prominently
used with Client-Unique data. When cookies are provided with Client-Static
data, servers can exclude them from the authenticated data to still retain the
benefits of iHTTP.

6 Implementation and Experimental Evaluation

6.1 Implementation

iHTTP requires modification of both client and server to enable its security
features. On the server side, we implemented iHTTP as an Apache module
for handling iHTTP requests and responses. The Apache module is responsible
for authenticator generation, managing the authenticator cache, and embedding
hash identifiers into HTML. We used Apache’s Portable Runtime API to imple-
ment caching. To evaluate iHTTP against the latest proposed HTTP integrity
technique, we also implemented HTTPi as an Apache module.

iHTTP is designed to handle both chunked and non-chunked data. For non-
chunked data, the iHTTP authenticator is added as part of the HTTP headers.
Chunked data must be handled differently as chunks occurring after the first
chunked do not contain HTTP headers. Since authenticators are associated with
each chuck, iHTTP embeds the authenticator as chunked data.

On the client side, we developed a Firefox extension to enable iHTTP sup-
port. Our extension relies upon the Mozilla service interfaces for intercepting
responses and rewriting data. The extension handles verification as well as sup-
port for Opportunistic Hash Verification.

14

6.2 Experimental Evaluation

Experimental Methodology: First, we provide a microbenchmark to investi-
gate the costs of specific iHTTP operations (e.g., signing, hashing, caching, and
hash embedding), which may impact the server performance. These operations
also represent the operational costs for the HTTPi implementation. Next we
give a macrobenchmark of the iHTTP server module to investigate the through-
put and max response time for HTTP, HTTPS, iHTTP, and HTTPi. Finally,
we benchmark iHTTP on a resource restricted client to measure the impact on
the overall response time for rendering an entire page with Opportunistic Hash
Verification enable and disabled.

Experimental Setup: Our hardware platform is an IBM HS22 X-Server
with 16 cores and 32 GB of RAM. The iHTTP Apache module is installed with
Apache 2.2 web server hosted on a virtual machine (VM) running CentOS 5.
Apache is run with the standard configuration for server processes. The VM
is configured with dedicated 4 CPU cores and 16 GB of RAM. To run our
benchmarks, we created another VM running Ubuntu 11.10 with 2 dedicated
CPU cores and 4 GB of RAM, also hosted on the IBM HS22 X-Server. Network
communication is provided via ESXi virtual switch.

The iHTTP module is configured with a 2,048 bit SSL Certificate which
represents the suggested key strength by NIST [18]. We note that larger keys
will have a more severe impact on the performance on existing HTTP integrity
protocols and thus iHTTP provides even more benefit as keys become larger.

To test resource constrained clients, we install our iHTTP client module as a
Firefox mobile plugin on a Motorolla Droid 2 running Android based Cyanogen-
mod 7.

Table 1. Server Microbench Results
Authenticator Creation 4.97771 ms

Signature Generation 4.3207 ms
Hash Embedding 0.13189 ms

Cache Search 0.08751 ms
SHA-1 Operation 0.00042 ms

Server Microbenchmark: iHTTP
has several operations for enabling
the protocol that incur overhead. The
main operations include hashing, signing,
caching, and hash embedding. We instru-
ment the Apache module to record the
costs of these operations and display the
results in Table 1.

As expected, the time required to sign the authenticator is significantly more
costly than the other operations involved with enabling iHTTP. Thus, we can
assume a great savings by foregoing signing each chunk with hash based authen-
tication and integrity verification.

Server Macrobenchmarks: To measure the impact of iHTTP on overall
performance, we run two different macrobenchmark tests, JMeter Benchmark
and SpecWeb2009 Benchmark, to investigate the impact given different website
configurations.

JMeter Benchmark: We deployed a website representing a typical blog or per-
sonal website containing only Client-Static data. Four copies were deployed to
represent each of the HTTP data formats, non-chunked-not-compressed, com-
pressed, chunked, and chunked-compressed. The sites using chunked data are

15

(a) Non-Chunked-Not-Compressed (b) Compressed

(c) Chunked (d) Chunked-Compressed

Fig. 7. Distribution of Response Time

configured such that each HTML response contains five chunks. The landing
page is 67.91 Kb in size and contains 16 HTTP objects. JMeter benchmark was
configured to simulate 130 different simultaneous clients, each making 10 page
requests for the site. Each page request resulted in 17 GET requests per page.
The interactions were duplicated across the sites to ensure equality and each
simulation was run separately. Figure 7 shows the response time with respect to
the number of requests.

Table 2. JMeter Results for Figure 7(a)

(a) Response Size

HTTP 16087 bytes
iHTTP 17866 bytes
HTTPS 16087 bytes
HTTPi 17226 bytes

(b) Throughput

HTTP 267.2 req/sec
iHTTP 252.8 req/sec
HTTPS 114.6 req/sec
HTTPi 84.1 req/sec

The figures show that
iHTTP outperforms HTTPi
in all cases. Furthermore,
the response times of iHTTP
are very close to HTTP for
both Figures 7(a) and 7(b).
iHTTP performs not as well
for chunked and chunked-
compressed data. This is expected since iHTTP must handle each chunk sepa-
rately, which adds overhead. In general, iHTTP performs better than HTTPS
since authenticator caching helps amortize the number of signature operations.

Table 2 shows the response sizes and the throughputs of the HTML doc-
uments for Figure 7(a). Here we see the added cost of the authenticators and
embedded hashes. The authenticator size is 1,139 bytes, and Opportunistic Hash
Verification adds 640 bytes for the HTML page, which are 7% and 4%, respec-
tively, for non-chunked-non-compressed responses. We note that both of these
numbers are reliant on the size of the response data.

16

SpecWeb2009 Benchmark: SpecWeb2009 allows us to investigate the im-
pact of Client-Unique data on servers and protocols by simulating dynamic web
applications. We deployed the SpecWeb2009 banking application, which consists
of 15 pages and each page makes an average of 13.6 supporting requests with
the minimum being 8 requests and maximum being 19 requests. We configured
SpecWeb to simulate 150 simultaneous users for HTTP, HTTPS, iHTTP, and
HTTPi configurations. Default configurations were used for KeepAlive and SSL
sessions on the SpecWeb clients.

Table 3. SpecWeb2009 Results

Protocol Avg Resp Bytes/Req
HTTP 544 ms 41,818

HTTPS 576 ms 41,828
iHTTP 647 ms 50,627
HTTPi 662 ms 52,147

Table 3 shows that both iHTTP and
HTTPi perform more poorly than HTTPS
and HTTP. First, we observe that each of the
15 generated HTML pages generate Client-
Unique content per URL request. Hence, the
“account summary.php” page will contain
content specific to the user who requested it.
In this case, iHTTP and HTTPi will be required to regenerate the authenticator
for each client request.

Client Benchmark: This section compares iHTTP Opportunistic Hash Ver-
ification with plain signature-based HTTP integrity techniques. We do not pro-
vide comparison of iHTTP with HTTP and HTTPS, since previous research
has already provided a thorough comparison of signature-based HTTP integrity
techniques with HTTP and HTTPS [7].

We installed the iHTTP client on Firefox mobile version 8.0. We requested the
landing page of our static website used in the JMeter benchmark and recorded
the load time of 20 requests when both enabling and disabling Opportunistic
Hash Verification from the server. The plain signature-based approach requires
16 additional public key operations by the client.

The average time per page load for the plain signature-based approach took
7.4321 second. Pages with Opportunistic Hash Verification enabled on average
took 5.8291 seconds to load. This shows that Opportunistic Hash Verification
reduces the computational overhead of the client by 21% compared to previ-
ous HTTP integrity techniques. Furthermore, the disparity of performance will
increase with the number of HTTP objects outlined in the HTML page.

7 Conclusion

In this paper, we proposed a new protocol named iHTTP to enable lightweight
authentication of Client-Static HTTP response data. The proposed iHTTP pro-
tocol adaptively handles different data encodings to allow for better perfor-
mance without effecting user experience. It also uses a hash chain based Sliding-
Timestamps to provide efficient freshness authentication without using public
key operations, and exploits Opportunistic Hash Verification to reduce client
public key operations. Our experimental evaluation demonstrated that iHTTP
provides similar performance to HTTP, and higher throughput and lower max-
imum response time than HTTPS for Client-Static data.

17

References

1. Coarfa, C., Druschel, P., Wallach, D.S.: Performance analysis of tls web servers.
ACM Trans. Comput. Syst. 24 (February 2006) 39–69

2. Gaspard, C., Goldberg, S., Itani, W., Bertino, E., Nita-Rotaru, C.: Sine: Cache-
friendly integrity for the web. In: Secure Network Protocols, 2009. NPSec 2009.
5th IEEE Workshop on. (oct. 2009) 7 –12

3. Vratonjic, N., Freudiger, J., Hubaux, J.P.: Integrity of the web content: the case of
online advertising. In: Proceedings of the 2010 international conference on Collab-
orative methods for security and privacy. CollSec’10, Berkeley, CA, USA, USENIX
Association (2010) 2–2

4. Stamm, S., Ramzan, Z., Jakobsson, M.: Drive-by pharming. In: Proceedings
of the 9th international conference on Information and communications security.
ICICS’07, Berlin, Heidelberg, Springer-Verlag (2007) 495–506

5. Lesniewski-Laas, C.: Ssl splitting and barnraising: Cooperative caching with
authenticity guarantees. Master’s thesis, Massachusetts Institute of Technology
(February 2003)

6. Choi, T., Gouda, M.: Httpi: An http with integrity. In: Computer Communications
and Networks (ICCCN), 2011 Proceedings of 20th International Conference on. (31
2011-aug. 4 2011) 1 –6

7. K., S., HJ., W., A., M., C., J., W., L.: Httpi for practical end-to-end web content
integrity. Technical report, Microsoft Research (2011)

8. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Rfc 2616, hypertext transfer protocol – http/1.1 (1999)

9. Rescorla, E.: Http over tls. Internet RFC 2818 (May 2000)
10. Rescorla, E., Schiffman, A.: The secure hypertext transfer protocol – shttp (1999)
11. Torvinen, V., Arkko, J., Naeslund, M.: Hypertext transfer protocol (http) digest

authentication using authentication and key agreement (aka) version-2. Internet
RFC 4169 (November 2005)

12. Goodin, D.: Botnet caught red handed stealing from google. The Register (Septem-
ber 2009)

13. Erman, J., Gerber, A., Hajiaghayi, M.T., Pei, D., Spatscheck, O.: Network-aware
forward caching. In: Proceedings of the 18th international conference on World
wide web. WWW ’09, New York, NY, USA, ACM (2009) 291–300

14. : Cisco visual networking index: Forecast and methodology, 2009-2014 (June 2011)
15. Reis, C., Gribble, S.D., Kohno, T., Weaver, N.C.: Detecting in-flight page changes

with web tripwires. In: Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation. NSDI’08, Berkeley, CA, USA, USENIX As-
sociation (2008) 31–44

16. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. 1st edn. CRC Press, Inc., Boca Raton, FL, USA (1996)

17. Perrig, A., Canetti, R., Tygar, J., Song, D.: Efficient authentication and signing
of multicast streams over lossy channels. In: Security and Privacy, 2000. S P 2000.
Proceedings. 2000 IEEE Symposium on. (2000) 56 –73

18. Barker, E., Roginsky, A.: Transitions: Recommendation for transitioning the use
of cryptographic algorithms and key lengths. SP-800-131a, U.S. DoC/National
Institute of Standards and Technology (Jan 2011) See http://csrc.nist.gov/

publications/nistpubs/800-131A/sp800-131A.pdf.

18

